Presence of antimicrobial resistance (AMR) genes in Escherichia coli inhabiting anthropogenic rivers is an important public health concern because plasmid-mediated AMR genes can easily spread to other pathogens by horizontal gene transfer. Besides β-lactams, quinolones and aminoglycosides are the major antibiotics against E. coli. In the present study, we have investigated the presence of plasmid-mediated quinolone resistance (PMQR) and aminoglycoside resistance genes in E. coli isolated from a major river of northern India. Our results revealed that majority of the strains were phenotypically susceptible for fluoroquinolones and some aminoglycosides like amikacin, netilmicin, tobramycin and gentamicin. However, 16.39% of the strains were resistant for streptomycin, 8.19% for kanamycin and 3.30% for gentamicin. Of the various PMQR genes investigated, only qnrS1 was present in 24.59% of the strains along with ISEcl2. Aminoglycoside-resistance genes like strA-strB were found to be present in 16.39%, aphA1 in 8.19% and aacC2 in only 3.30% of the strains. Though, no co-relation was observed between phenotypic resistance for fluorquinolones and presence of PMQR genes, phenotypic resistance for streptomycin, kanamycin and gentamicin exactly co-related with the presence of the genes strA-strB, aphA1 and aacC2, respectively. Moreover, all the AMR genes discerned in aquatic E. coli were found to be situated on conjugative plasmids and, thus easily transferrable. Our study accentuates the importance of routine surveillance of urban rivers to curtail the spread of AMR genes in aquatic pathogens.