We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Polarized Optical Microscopy (POM) is a standard experimental technique for the characterization of liquid crystal textures and their topological defects. This appendix describes how to produce POM images to be compared with experiment starting from computer simulations.
This appendix explains quantum effects: uncertainty, entanglement, and superposition; and explains how these effects form the basis of quantum sensing, computing and communication. This appendix summarizes the history and debates of wave mechanics, which was developed at the start of the Twentieth Century. Examples are given of macro-level quantum effects that the reader can observe in an attempt to start building an intuitive sense of quantum effects. These macro-level quantum phenomena are the dual-slit experiment, black-body radiation, and the characteristics of polarized light. Much attention is given to the characteristics of light, both because light provides examples of quantum effects but also because photonic emitters and sensors play a key role in quantum sensing, computing, and communication.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.