We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
We give some new characterizations for compactness of weighted composition operators $u{{C}_{\varphi }}$ acting on Bloch-type spaces in terms of the power of the components of $\varphi$, where $\varphi$ is a holomorphic self-map of the polydisk ${{\mathbb{D}}^{n}}$, thus generalizing the results obtained by Hyvärinen and Lindström in 2012.
We study properties of composition operators induced by symbols acting from the unit disk to the polydisk. This result will be involved in the investigation of weighted composition operators on the Hardy space on the unit disk and, moreover, be concerned with composition operators acting from the Bergman space to the Hardy space on the unit disk.
We consider the problem of determining for which square integrable functions $f$ and $g$ on the polydisk the densely defined Hankel product ${{H}_{f}}\,H_{g}^{*}$ is bounded on the Bergman space of the polydisk. Furthermore, we obtain similar results for the mixed Haplitz products ${{H}_{g}}\,{{T}_{{\bar{f}}}}$ and ${{T}_{f}}\,H_{g}^{*}$, where $f$ and $g$ are square integrable on the polydisk and $f$ is analytic.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.