The present work investigates inorganic–organic nanocomposite polymer electrolytes (NCPEs) for lithium-ion battery applications. Nanoscale TiO2 particles were dispersed into boron comprising poly(vinyl alcohol) (PVA)-g-poly(ethylene glycol) methyl ether (PEGME) host polymer at several percentages. During preparation, nanocomposite matrices were doped with CF3SO3Li at several compositions and homogeneous soft solid materials were obtained. The interactions between host copolymer and inorganic additive and dopant were studied by Fourier transform infrared spectroscopy. The surface morphology of the NCPEs was investigated by scanning electron microscopy and their thermal properties were studied by thermogravimetric analysis and differential scanning calorimetry. The ionic conductivity of these novel NCPEs was studied by dielectric-impedance spectroscopy. High ambient temperature Li+ ion conducting (∼10−4 S/cm) NCPE matrices can be suggested for lithium battery applications.