We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
In this paper, we reduce the logarithmic Sarnak conjecture to the $\{0,1\}$-symbolic systems with polynomial mean complexity. By showing that the logarithmic Sarnak conjecture holds for any topologically dynamical system with sublinear complexity, we provide a variant of the $1$-Fourier uniformity conjecture, where the frequencies are restricted to any subset of $[0,1]$ with packing dimension less than one.
We introduce a full NT-step infeasible interior-point algorithm for semidefinite optimization based on a self-regular function to provide the feasibility step and to measure proximity to the central path. The result of polynomial complexity coincides with the best known iteration bound for infeasible interior-point methods.
In this paper, using the framework of self-regularity, we propose a hybrid adaptive algorithm for the linear optimization problem. If the current iterates are far from a central path, the algorithm employs a self-regular search direction, otherwise the classical Newton search direction is employed. This feature of the algorithm allows us to prove a worst case iteration bound. Our result matches the best iteration bound obtained by the pure self-regular approach and improves on the worst case iteration bound of the classical algorithm.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.