In this paper we extend the notion of quasi-reversibility and apply it to the study of queueing networks with instantaneous movements and signals. The signals treated here are considerably more general than those in the existing literature. The approach not only provides a unified view for queueing networks with tractable stationary distributions, it also enables us to find several new classes of product form queueing networks, including networks with positive and negative signals that instantly add or remove customers from a sequence of nodes, networks with batch arrivals, batch services and assembly-transfer features, and models with concurrent batch additions and batch deletions along a fixed or a random route of the network.