In this paper we are concerned with the reliability properties of two coherent systems having shared components. We assume that the components of the systems are two overlapping subsets of a set of n components with lifetimes X1,...,Xn. Further, we assume that the components of the systems fail according to the model of sequential order statistics (which is equivalent, under some mild conditions, to the failure model corresponding to a nonhomogeneous pure-birth process). The joint reliability function of the system lifetimes is expressed as a mixture of the joint reliability functions of the sequential order statistics, where the mixing probabilities are the bivariate signature matrix associated to the structures of systems. We investigate some stochastic orderings and dependency properties of the system lifetimes. We also study conditions under which the joint reliability function of systems with shared components of order m can be equivalently written as the joint reliability function of systems of order n (n>m). In order to illustrate the results, we provide several examples.