We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
This chapter contains topics related to matrices with special structures that arise in many applications. It discusses companion matrices that are a classic linear algebra topic. It constructs circulant matrices from a particular companion matrix and describes their signal processing applications. It discusses the closely related family of Toeplitz matrices. It describes the power iteration that is used later in the chapter for Markov chains. It discusses nonnegative matrices and their relationships to graphs, leading to the analysis of Markov chains. The chapter ends with two applications: Google’s PageRank method and spectral clustering using graph Laplacians.
We present several methods for approximating the spectrum of a matrix. We start by providing coarse estimates using so-called Gershgoring disks. The stability, via the Bauer-Fike theorem is then analyzed. For Hermitian matrices we then present and analyze the power iteration method and its variants. The reduction to Hessenberg form, and the QR algorithm are then presented and analyzed. The chapter then concludes with a discussion of the Golub-Kahan algorithm to compute the SVD.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.