We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
The Personalized Advantage Index (PAI) shows promise as a method for identifying the most effective treatment for individual patients. Previous studies have demonstrated its utility in retrospective evaluations across various settings. In this study, we explored the effect of different methodological choices in predictive modelling underlying the PAI.
Methods
Our approach involved a two-step procedure. First, we conducted a review of prior studies utilizing the PAI, evaluating each study using the Prediction model study Risk Of Bias Assessment Tool (PROBAST). We specifically assessed whether the studies adhered to two standards of predictive modeling: refraining from using leave-one-out cross-validation (LOO CV) and preventing data leakage. Second, we examined the impact of deviating from these methodological standards in real data. We employed both a traditional approach violating these standards and an advanced approach implementing them in two large-scale datasets, PANIC-net (n = 261) and Protect-AD (n = 614).
Results
The PROBAST-rating revealed a substantial risk of bias across studies, primarily due to inappropriate methodological choices. Most studies did not adhere to the examined prediction modeling standards, employing LOO CV and allowing data leakage. The comparison between the traditional and advanced approach revealed that ignoring these standards could systematically overestimate the utility of the PAI.
Conclusion
Our study cautions that violating standards in predictive modeling may strongly influence the evaluation of the PAI's utility, possibly leading to false positive results. To support an unbiased evaluation, crucial for potential clinical application, we provide a low-bias, openly accessible, and meticulously annotated script implementing the PAI.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.