A detailed dosimetry study of electromagnetic absorption and temperature rise under real scenarios is delivered when a mobile phone is used inside an elevator cabin. Numerically accurate human models of a 7th month pregnant woman and a 5-year-old female child are utilized as the exposed subjects. The female child acts as the phone user. The mobile phone is modeled in three talk positions (parallel, tilt, and cheek) operating at 1000 MHz and 1800 MHz. From the obtained numerical results for the specific absorption rate (SAR) and temperature rise induced by the mobile radiofrequency (RF) radiation, it is found that the child's RF exposure is significantly affected by the phone position and less affected by the relevant position of the human models. The exact opposite case applies for the pregnant woman model and its fetus. Almost all numerical investigations are carried out inside a metallic elevator cabin.