We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
In clinical research, populations are often selected on the sum-score of diagnostic criteria such as symptoms. Estimating statistical models where a subset of the data is selected based on a function of the analyzed variables introduces Berkson's bias, which presents a potential threat to the validity of findings in the clinical literature. The aim of the present paper is to investigate the effect of Berkson's bias on the performance of the two most commonly used psychological network models: the Gaussian Graphical Model (GGM) for continuous and ordinal data, and the Ising Model for binary data.
Methods
In two simulation studies, we test how well the two models recover a true network structure when estimation is based on a subset of the data typically seen in clinical studies. The network is based on a dataset of 2807 patients diagnosed with major depression, and nodes in the network are items from the Hamilton Rating Scale for Depression (HRSD). The simulation studies test different scenarios by varying (1) sample size and (2) the cut-off value of the sum-score which governs the selection of participants.
Results
The results of both studies indicate that higher cut-off values are associated with worse recovery of the network structure. As expected from the Berkson's bias literature, selection reduced recovery rates by inducing negative connections between the items.
Conclusion
Our findings provide evidence that Berkson's bias is a considerable and underappreciated problem in the clinical network literature. Furthermore, we discuss potential solutions to circumvent Berkson's bias and their pitfalls.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.