In this paper, a new optimisation method incorporating lamination parameters and a guide-based blending model is proposed. Lamination parameters for a guide laminate and ply number of each panel are employed as design variables for optimisation with a parallel real-coded genetic algorithm incorporating structure behaviour and manufacturing constraints. During the optimisation process, with a form of least squares fitting adopted, another genetic algorithm is used to obtain the guide stacking sequence of the guide laminate from the guide lamination parameters, and then the laminate configurations of each panel are obtained from the guide stacking sequence and number of plies for each panel. The proposed framework is demonstrated via design of an 18-panel horseshoe configuration, where each panel is optimised individually with a buckling constraint. Numerical results indicate that the present algorithm is capable of obtaining fully blended designs.