We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
To review the incidence of clinically significant pulmonary toxicity following total body irradiation (TBI) as a part of the conditioning regimen for acute lymphoblastic leukaemia (ALL) patients undergoing bone marrow transplantation (BMT) at The Ottawa Hospital Cancer Centre.
Methods
This is a retrospective review of ALL patients who received TBI in The Ottawa Hospital Bone Marrow Transplant Program (TOH-BMT) as part of their conditioning regimen from 1991 to 2011 inclusive. The patients were treated using a locally developed translating-couch irradiation technique. We have analysed all available data for the first 100 days following TBI to determine the incidence of radiation-induced pulmonary toxicities.
Results
Of the total 622 patients undergoing TBI during the specified period, 88 had ALL. Median age at BMT was 30 years and the conditioning regimens varied. A total of 74 (84%) patients received 12 Gy/6 F/BID of TBI. A total of 55 (63%) patients have died, 32 (36%) within the 1st year after BMT. In the 1st year, pulmonary events were reported for 24 (27%) patients, and the follow-up notes were unavailable for seven (8%). Pulmonary toxicities were reported as the cause of death for six patients, five (6%) within the 1st year. It is estimated that the total number of deaths in the 1st year possibly attributed to radiation-induced lung injury was four (4·5%). Eight (9%) patients had symptoms suggestive of non-lethal grade 2–3 radiation-induced pneumonitis.
Conclusions
TBI continues to be an important component of the conditioning regimen for ALL patients undergoing BMT, and the incidence of radiation-induced pulmonary injury, using our technique and lung dose, is comparable to the published literature.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.