We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
A simple Steinberg algebra associated to an ample Hausdorff groupoid G is algebraically purely infinite if and only if the characteristic functions of compact open subsets of the unit space are infinite idempotents. If a simple Steinberg algebra is algebraically purely infinite, then the reduced groupoid $C^*$-algebra $C^*_r(G)$ is simple and purely infinite. But the Steinberg algebra seems too small for the converse to hold. For this purpose we introduce an intermediate *-algebra B(G) constructed using corners $1_U C^*_r(G) 1_U$ for all compact open subsets U of the unit space of the groupoid. We then show that if G is minimal and effective, then B(G) is algebraically properly infinite if and only if $C^*_r(G)$ is purely infinite simple. We apply our results to the algebras of higher-rank graphs.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.