We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Let $X$ be an $n$-dimensional (smooth) intersection of two quadrics, and let ${T^{\rm{*}}}X$ be its cotangent bundle. We show that the algebra of symmetric tensors on $X$ is a polynomial algebra in $n$ variables. The corresponding map ${\rm{\Phi }}:{T^{\rm{*}}}X \to {\mathbb{C}^n}$ is a Lagrangian fibration, which admits an explicit geometric description; its general fiber is a Zariski open subset of an abelian variety, which is a quotient of a hyperelliptic Jacobian by a $2$-torsion subgroup. In dimension $3$, ${\rm{\Phi }}$ is the Hitchin fibration of the moduli space of rank $2$ bundles with fixed determinant on a curve of genus $2$.
Andrei Agrachev, Scuola Internazionale Superiore di Studi Avanzati, Trieste,Davide Barilari, Université de Paris VII (Denis Diderot),Ugo Boscain, Centre National de la Recherche Scientifique (CNRS), Paris
In this chapter we present some applications of theHamiltonian formalism developed in Chapter 4. Wegive a proof of the well-known Arnold–Liouvilletheorem and, as an application, we study thecomplete integrability of the geodesic flow on aspecial class of Riemannian manifolds.
In the Mathematical Review of ‘On a conjecture of Kontsevich and variants of Castelnuovo's lemma’ [Compositio Mathematica 115 (1999), 205–230], Gizatullin pointed out that the proof as written is incomplete for the complex case because the possibility of a certain equation vanishing identically was ignored. This corrigendum addresses the missing case. Note that it is simply another iteration of the argument already present in the article.
Let A=(aij) be an orthogonal matrix (over R or C) with no entries zero. Let B= (bij) be the matrix defined by bij= 1/ai j. M. Kontsevich conjectured that the rank of B is never equal to three. We interpret this conjecture geometrically and prove it. The geometric statement can be understood as variants of the Castelnuovo lemma and Brianchon‘s theorem.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.