We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
One of the first applications of quantum information to cryptography to be discovered is to the creation of money that cannot be copied. Due to the no-cloning principle, which states that there is no procedure that can copy an arbitrary quantum state, we can hope to create perfectly secure money based on quantum information. In this chapter we study how this can be done by following Wiesner’s idea from the 1970s. To analyze the security of Wiesner’s scheme we develop a formalism for general quantum attacks by studying quantum channels, and encounter some limitations of Wiesner’s scheme.
Given two unital C*-algebras equipped with states and a positive operator in the enveloping von Neumann algebra of their minimal tensor product, we define three parameters that measure the capacity of the operator to align with a coupling of the two given states. Further, we establish a duality formula that shows the equality of two of the parameters for operators in the minimal tensor product of the relevant C*-algebras. In the context of abelian C*-algebras, our parameters are related to quantitative versions of Arveson's null set theorem and to dualities considered in the theory of optimal transport. On the other hand, restricting to matrix algebras we recover and generalize quantum versions of Strassen's theorem. We show that in the latter case our parameters can detect maximal entanglement and separability.
For a state $\omega$ on a C$^{*}$-algebra $A$, we characterize all states $\rho$ in the weak* closure of the set of all states of the form $\omega \circ \varphi$, where $\varphi$ is a map on $A$ of the form $\varphi (x)=\sum \nolimits _{i=1}^{n}a_i^{*}xa_i,$$\sum \nolimits _{i=1}^{n}a_i^{*}a_i=1$ ($a_i\in A$, $n\in \mathbb {N}$). These are precisely the states $\rho$ that satisfy $\|\rho |J\|\leq \|\omega |J\|$ for each ideal $J$ of $A$. The corresponding question for normal states on a von Neumann algebra $\mathcal {R}$ (with the weak* closure replaced by the norm closure) is also considered. All normal states of the form $\omega \circ \psi$, where $\psi$ is a quantum channel on $\mathcal {R}$ (that is, a map of the form $\psi (x)=\sum \nolimits _ja_j^{*}xa_j$, where $a_j\in \mathcal {R}$ are such that the sum $\sum \nolimits _ja_j^{*}a_j$ converge to $1$ in the weak operator topology) are characterized. A variant of this topic for hermitian functionals instead of states is investigated. Maximally mixed states are shown to vanish on the strong radical of a C$^{*}$-algebra and for properly infinite von Neumann algebras the converse also holds.
We show that the representations of the Cuntz $C^*$-algebras $\mathcal{O}_n$ which arise in wavelet analysis and dilation theory can be classified through a simple analysis of completely positive maps on finite-dimensional space. Based on this analysis, we find an application in quantum information theory; namely, a structure theorem for the fixed-point set of a unital quantum channel. We also include some open problems motivated by this work.