We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Let $G$ and $\tilde{G}$ be Kleinian groups whose limit sets $S$ and $\tilde{S}$, respectively, are homeomorphic to the standard Sierpiński carpet, and such that every complementary component of each of $S$ and $\tilde{S}$ is a round disc. We assume that the groups $G$ and $\tilde{G}$ act cocompactly on triples on their respective limit sets. The main theorem of the paper states that any quasiregular map (in a suitably defined sense) from an open connected subset of $S$ to $\tilde{S}$ is the restriction of a Möbius transformation that takes $S$ onto $\tilde{S}$, in particular it has no branching. This theorem applies to the fundamental groups of compact hyperbolic 3-manifolds with non-empty totally geodesic boundaries. One consequence of the main theorem is the following result. Assume that $G$ is a torsion-free hyperbolic group whose boundary at infinity $\partial _{\infty }G$ is a Sierpiński carpet that embeds quasisymmetrically into the standard 2-sphere. Then there exists a group $H$ that contains $G$ as a finite index subgroup and such that any quasisymmetric map $f$ between open connected subsets of $\partial _{\infty }G$ is the restriction of the induced boundary map of an element $h\in H$.
An extension of a result of Sela shows that if Γ is a torsion-free word hyperbolic group, then the only homomorphisms Γ→Γ with finite-index image are the automorphisms. It follows from this result and properties of quasiregular mappings, that if M is a closed Riemannian n-manifold with negative sectional curvature (), then every quasiregular mapping f:M→M is a homeomorphism. In the constant-curvature case the dimension restriction is not necessary and Mostow rigidity implies that f is homotopic to an isometry. This is to be contrasted with the fact that every such manifold admits a non-homeomorphic light open self-mapping. We present similar results for more general quotients of hyperbolic space and quasiregular mappings between them. For instance, we establish that besides covering projections there are no π1-injective proper quasiregular mappings f:M→N between hyperbolic 3-manifolds M and N with non-elementary fundamental group.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.