We define balanced self-similar quasi-round carpets and compare the carpet moduli of some path families relating to such a carpet. Then, using some known results on quasiconformal geometry of carpets, we prove that the group of quasisymmetric self-homeomorphisms of every balanced self-similar quasi-round carpet is finite. Furthermore, we prove that some balanced self-similar carpets in the unit square with strong geometric symmetry are quasisymmetrically rigid by using the quasisymmetry of weak tangents of carpets.