We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
We prove many simultaneous congruences mod 2 for elliptic and Hilbert modular forms among forms with different Atkin–Lehner eigenvalues. The proofs involve the notion of quaternionic $S$-ideal classes and the distribution of Atkin–Lehner signs among newforms.
We show that over any field $F$ of characteristic 2 and 2-rank $n$, there exist $2^{n}$ bilinear $n$-fold Pfister forms that have no slot in common. This answers a question of Becher [‘Triple linkage’, Ann.$K$-Theory, to appear] in the negative. We provide an analogous result also for quadratic Pfister forms.
We determine the Galois representations inside the $\ell$-adic cohomology of some quaternionic and related unitary Shimura varieties at ramified places. The main results generalize the previous works of Reimann and Kottwitz in this setting to arbitrary levels at $p$, and confirm the expected description of the cohomology due to Langlands and Kottwitz.
We study the possible weights of an irreducible two-dimensional mod p representation of which is modular in the sense that it comes from an automorphic form on a definite quaternion algebra with centre F which is ramified at all places dividing p, where F is a totally real field. In most cases we determine the precise list of possible weights; in the remaining cases we determine the possible weights up to a short and explicit list of exceptions.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.