Two-dimensional (2D) leaky-wave antennas (LWAs) are commonly designed to radiate pencil beams at broadside and/or scanned conical beams. Recently, the possibility to radiate narrow null patterns at broadside has also been preliminarily explored. In this work, we first review the design rules to obtain a pencil beam from an infinite 2D LWA and then show how they change for having a beam with a narrow null at broadside. The effects of antenna truncation are also accounted for in both cases, and numerical results show how the optimum conditions are in turn affected. Finally, full-wave validations of practical structures excited with either horizontal or vertical dipoles validate the analysis.