We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
The authors proposed a novel perimeter-based index (PBI) that was capable of evaluating the accuracy in the appraisal of auto-segmentation software. A quantitative value, that is time saved in editing the auto-segmented contours, was used to compare the effectiveness of two other commonly used indices in this study.
Methods
The relationship between the proposed index and the amount of the contouring time that could be saved was studied. The performances of two other commonly used similarity indices, namely Dice similarity coefficient (DSC) and the modified normalised average Hausdorff distance (MNAHD), were also evaluated. Ten nasopharyngeal cases and ten prostate cases that were previously treated with intensity-modulated radiation therapy technique were recruited as the validation cases in this study. Three observers were invited to contour four structures (bladder, rectum, brain stem and parotid gland) on computed tomography images of the validation cases without any aids. The time taken for contouring was recorded as the manual contouring time. By using an atlas-based auto-segmentation software, three sets of contours were generated for each validation case with different library sizes to produce different degrees of similarity level. The values of the three similarity indices of the auto-segmented contours were calculated. The observers were asked to edit the auto-segmented contours and the editing time was recorded.
The correlation between the editing time and the similarity indices was studied. The amount of time saved was calculated by subtracting the editing time from the manual contouring time. The performances of PBI, DSC and MNAHD were evaluated using Pearson correlation coefficient and receiver operating curve (ROC) analysis.
Results
The PBI showed a positive linear relationship with the amount of contouring time saved. Pearson correlation coefficient ranged from 0·73 to 0·86 for the four structures. The PBI had a stronger correlation than the DSC in bladder and parotid gland, while there was no significant difference between the two indices in rectum and brain stem. The MNAHD had an inferior correlation than the proposed index. For the ROC analysis, the cut-off values for the PBI were 0·549, 0·401 and 0·301 for the three levels of contouring time saved, namely 50, 25 and 0%, respectively. The accuracy of PBI was over 77% and the Youden index was >0·6 for all three levels.
Conclusions
The proposed index showed a stronger relationship to the amount of contouring time saved. It was a simple tool that could be used to evaluate the performance of different segmentation algorithms.
The incidence of venous air embolism (VAE) during and following diagnostic and interventional radiographic procedures utilizing contrast media has been well documented in the literature. However to date a case report of a venous air embolism occurring within an outpatient healthcare facility during a contrast enhanced computer tomography radiation therapy planning procedure remains under reported.
Purpose
Healthcare professionals must remain alerted to the fact that iatrogenic VAE may occur unexpectedly during and following diagnostic and interventional radiographic procedures utilizing the injection of contrast media. The action by all healthcare professionals to implement rapid and clear acute care guidelines will increase the probability of the patient recovering from the event.
Materials and methods
A review of the aetiology and associated pathophysiology of VAE is provided. This is followed by a detailed case report of the occurrence of a non-fatal VAE event (patient consent was obtained and the consent form template was reviewed by a Research Ethics Board).
Conclusion
We conclude with a discussion of quality assurance recommendations that should be considered for implementation in an outpatient facility setting that is performing contrast enhanced computer tomography diagnostic, interventional or radiation therapy planning radiographic procedures.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.