We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
We present a catalogue of over 7000 sources from the GLEAM survey which have significant structure on sub-arcsecond scales at 162 MHz. The compact nature of these sources was detected and quantified via their Interplanetary Scintillation (IPS) signature, measured in interferometric images from the Murchison Widefield Array. The advantage of this approach is that all sufficiently compact sources across the survey area are included down to a well-defined flux density limit. The survey is based on
${\sim}250\times 10\hbox{-}\mathrm{min}$
observations, and the area covered is somewhat irregular, but the area within
$1\,\mathrm{h}<\mathrm{RA}<11\,\mathrm{h}$
;
$-10^\circ<\mathrm{Decl.}<+20^\circ$
is covered entirely, and over 85% of this area has a detection limit for compact structure below 0.2 Jy. 7839 sources clearly showing IPS were detected (
${>}5\sigma$
confidence), with a further 5550 tentative (
${>}2\sigma$
confidence) detections. Normalised Scintillation Indices (NSI; a measure of the fraction of flux density coming from a compact component) are reported for these sources. Robust and informative upper limits on the NSI are reported for a further 31081 sources. This represents the largest survey of compact sources at radio frequencies ever undertaken.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.