This paper presents some results on identification in multitrait-multimethod (MTMM) confirmatory factor analysis (CFA) models. Some MTMM models are not identified when the (factorial-patterned) loadings matrix is of deficient column rank. For at least one other MTMM model, identification does exist despite such deficiency. It is also shown that for some MTMM CFA models, Howe's (1955) conditions sufficient for rotational uniqueness can fail, yet the model may well be identified and rotationally unique. Implications of these results for CFA models in general are discussed.