We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
For an arbitrary countable discrete infinite group G, non-singular rank-one actions are introduced. It is shown that the class of non-singular rank-one actions coincides with the class of non-singular $(C,F)$-actions. Given a decreasing sequence of cofinite subgroups in G with $\bigcap _{n=1}^\infty \bigcap _{g\in G}g\Gamma _ng^{-1}=\{1_G\}$, the projective limit of the homogeneous G-spaces $G/\Gamma _n$ as $n\to \infty $ is a G-space. Endowing this G-space with an ergodic non-singular non-atomic measure, we obtain a dynamical system which is called a non-singular odometer. Necessary and sufficient conditions are found for a rank-one non-singular G-action to have a finite factor and a non-singular odometer factor in terms of the underlying $(C,F)$-parameters. Similar conditions are also found for a rank-one non-singular G-action to be isomorphic to an odometer. Minimal Radon uniquely ergodic locally compact Cantor models are constructed for the non-singular rank-one extensions of odometers. Several concrete examples are constructed and several facts are proved that illustrate a sharp difference of the non-singular non-commutative case from the classical finite measure preserving one: odometer actions which are not of rank-one and factors of rank-one systems which are not of rank one; however, each probability preserving odometer is a factor of an infinite measure preserving rank-one system, etc.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.