We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Tracheal intubation is a high-risk intervention for exposure to airborne infective pathogens, including the novel coronavirus disease 2019 (COVID-19). During the recent pandemic, personal protective equipment (PPE) was essential to protect staff during intubation but is recognized to make the practical conduct of anesthesia and intubation more difficult. In the early phase of the coronavirus pandemic, some simple alterations were made to the emergency anesthesia standard operating procedure (SOP) of a prehospital critical care service to attempt to maintain high intubation success rates despite the challenges posed by wearing PPE. This retrospective observational cohort study aims to compare first-pass intubation success rates before and after the introduction of PPE and an altered SOP.
Methodology:
A retrospective observational cohort study was conducted from January 1, 2019 through August 30, 2021. The retrospective analysis used prospectively collected data using prehospital electronic patient records. Anonymized data were held in Excel (v16.54) and analyzed using IBM SPSS Statistics (v28). Patient inclusion criteria were those of all ages who received a primary tracheal intubation attempt outside the hospital by critical care teams. March 27, 2020 was the date from which the SOP changed to mandatory COVID-19 SOP including Level 3 PPE – this date is used to separate the cohort groups.
Results:
Data were analyzed from 1,266 patients who received primary intubations by the service. The overall first-pass intubation success rate was 89.7% and the overall intubation success rate was 99.9%. There was no statistically significant difference in first-pass success rate between the two groups: 90.3% in the pre-COVID-19 group (n = 546) and 89.3% in the COVID-19 group (n = 720); Pearson chi-square 0.329; P = .566. In addition, there was no statistical difference in overall intubation success rate between groups: 99.8% in the pre-COVID-19 group and 100.0% in the COVID-19 group; Pearson chi-square 1.32; P = .251.
Non-drug-assisted intubations were more than twice as likely to require multiple attempts in both the pre-COVID-19 group (n = 546; OR = 2.15; 95% CI, 1.19-3.90; P = .01) and in the COVID-19 group (n = 720; OR = 2.5; 95% CI, 1.5-4.1; P = <.001).
Conclusion:
This study presents simple changes to a prehospital intubation SOP in response to COVID-19 which included mandatory use of PPE, the first intubator always being the most experienced clinician, and routine first use of video laryngoscopy (VL). These changes allowed protection of the clinical team while successfully maintaining the first-pass and overall success rates for prehospital tracheal intubation.
General anaesthesia is the reversible loss of consciousness induced by pharmacological agents. Surgeries were previously often limited to superficial procedures and amputations due to significant patient discomfort. This chapter provides an overview of the conduct of general anaesthesia, and its various phases: induction, maintenance, and emergence. Core concepts such as depth of anaesthesia and perioperative care will also be reviewed. Anaesthetic adjuncts, drugs, and equipment will also be discussed due to their crucial role in ensuring patient safety during general anaesthesia.
Cricothyroidotomy is an advanced airway procedure for critically ill or injured patients. In Victoria, Australia, intensive care paramedics (ICPs) perform needle cricothyroidotomy utilizing the proprietary QuickTrach II (QTII) device. Recently, an Ambulance Victoria (AV) institutional change in workflow included pre-puncture surgical incision to assist in successful placement. This review aims to explore whether a surgical pre-incision prior to the insertion of the device improved overall procedural success rates of needle cricothyroidotomy using the QTII.
Methods:
This was a retrospective review of all patients who received a needle cricothyroidotomy by ICPs from May 1, 2015 through September 15, 2020. Data and patient care records were sourced from the AV data warehouse.
Results:
A total of 27 patients underwent a needle cricothyroidotomy with the mean age of patients being 50.2 years. Most cricothyroidotomies were performed using the QuickTrach II kit (92.6%). Prior to modification of the QTII procedure, front-of-neck access (FONA) success was 50.0%; however, this improved to 82.4% after the procedures recent update. The overall success rate of all paramedic-performed needle cricothyroidotomy during the study period was 74.1% (n = 20).
Conclusions:
This review demonstrates that propriety devices such as the QTII device achieve a low success rate for a FONA intervention. Despite the low frequency of this procedure, ICPs with extensive training and regular maintenance can perform needle cricothyroidotomy using scalpel assistance with a reasonable success rate. But when compared to the broader literature, success rate using a more straightforward technique such as a surgical cricothyroidotomy technique is likely going to be higher.
Prehospital pediatric tracheal intubation (TI) is a possible life-saving intervention that requires adequate experience to mitigate associated complications. The pediatric airway and respiratory physiology present challenges in addition to a relatively rare incidence of prehospital pediatric TI.
Study Objective:
The aim of this study was to describe characteristics and outcomes of prehospital TI in pediatric patients treated by critical care teams.
Methods:
This is a sub-group analysis of all pediatric (<16 years old) patients from a prospective, observational, multi-center study on prehospital advanced airway management in the Nordic countries from May 2015 through November 2016. The TIs were performed by anesthesiologists and nurse anesthetists staffing six helicopter and six Rapid Response Car (RRC) prehospital critical care teams.
Results:
In the study, 74 children were tracheal intubated, which corresponds to 3.7% (74/2,027) of the total number of patients. The pediatric patients were intubated by very experienced providers, of which 80% had performed ≥2,500 TIs. The overall TI success rate, first pass success rate, and airway complication rate were in all children (<16 years) 98%, 82%, and 12%. The corresponding rates among infants (<2 years) were 94%, 67%, and 11%. The median time on scene was 30 minutes.
Conclusion:
This study observed a high overall prehospital TI success rate in children with relatively few associated complications and short time on scene, despite the challenges presented by the pediatric prehospital TI.
Pulmonary aspiration of gastric contents during general anaesthesia can be fatal. A 1956 report identified pulmonary aspiration as the commonest cause of death during general anaesthesia and NAP4 reported similarly in 2011. Major efforts have been made to reduce its incidence. Cricoid pressure (force) was introduced in the 1960s but remains controversial. Recent studies and new techniques have shed further light on the debate. The role of second generation supraglottic airway devices and videolaryngoscopy is also discussed.
Prehospital anaesthesia in the United Kingdom (UK) is provided by Helicopter Emergency Medical Service (HEMS) and British Association for Immediate Care (BASICS), a road-based service. Muscle relaxation in rapid sequence induction (RSI) has been traditionally undertaken with the use of suxamethonium; however, rocuronium at higher doses has comparable intubating conditions with fewer side effects.
Hypothesis/Problem
The aim of this survey was to establish how many prehospital services in the UK are now using rocuronium as first line in RSI.
Methods
An online survey was constructed identifying choice of first-line muscle relaxant for RSI and emailed to lead clinicians for BASICS and HEMS services across the UK. If rocuronium was used, further questions regarding optimal dose, sugammadex, contraindications, and difference in intubating conditions were asked.
Results
A total of 29 full responses (93.5%) were obtained from 31 services contacted. Suxamethonium was used first line by 17 prehospital services (58.6%) and rocuronium by 12 (41.4%). In 11 services (91.7%), a dose of 1 mg/kg of rocuronium was used, and in one service, 1.2 mg/kg (8.3%) was used. No services using rocuronium carried sugammadex. In five services, slower relaxation time was found using rocuronium (41.7%), and in seven services, no difference in intubation conditions were noted (58.3%). Contraindications to rocuronium use included high probability of difficult airway and anaphylaxis.
Conclusion
Use of rocuronium as first-line muscle relaxant in prehospital RSI is increasing. Continued auditing of practice will ascertain which services have adopted change and identify if complications of failed intubation increase as a result.
HartleyEL, AlcockR. Rocuronium Versus Suxamethonium: A Survey of First-line Muscle Relaxant Use in UK Prehospital Rapid Sequence Induction. Prehosp Disaster Med. 2015;30(2):1-3.
The pulmonary aspiration of gastric contents can cause a pneumonitis with bronchospasm and pulmonary oedema if acidic liquid is inhaled, or less often airway obstruction or massive atelectasis if particulate matter is inhaled. Cricoid pressure can cause problems with the airway. It is important that cricoid pressure is released or adjusted to become Optimal External Laryngeal Pressure (OELP) if intubation is difficult as this may improve the view at laryngoscopy. The three-finger technique to apply cricoid pressure described by Sellick is actually almost impossible to apply when the patient's head is resting on a pillow. The incidence of regurgitation is not known following intravenous induction of anaesthesia with muscle relaxants, without cricoid pressure applied in patients at high risk. During a rapid sequence induction, intubation has failed after two unsuccessful attempts at laryngoscopy both using the gum elastic bougie.
Patients who present in emergency situations are assumed to have a full stomach and in the UK, it is recommended that a rapid sequence induction (RSI) is used in intubation. The majority of anaesthetic induction agents is vasodilators and has cardiodepressant effects. This chapter discusses extubation/weaning protocols. Tracheostomy is utilized in critical care units to facilitate weaning after prolonged ventilation. A cricothyroidotomy is usually performed as an emergency procedure when a secure airway is needed and attempts at orotracheal or nasotracheal intubation have failed. The anatomical landmark and insertion of a mini tracheostomy are similar to performing cricothyroidotomy. Generally they are not recommended for ventilation as the airway resistance is high but recent small studies have been carried out where the combination of a mini tracheostomy plus non-invasive ventilation (NIV) has been used in patients with respiratory failure due to neuromuscular disorder.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.