A Cultural Consensus Theory approach for ordinal data is developed, leading to a new model for ordered polytomous data. The model introduces a novel way of measuring response biases and also measures consensus item values, a consensus response scale, item difficulty, and informant knowledge. The model is extended as a finite mixture model to fit both simulated and real multicultural data, in which subgroups of informants have different sets of consensus item values. The extension is thus a form of model-based clustering for ordinal data. The hierarchical Bayesian framework is utilized for inference, and two posterior predictive checks are developed to verify the central assumptions of the model.