We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
We present a method for constructing and interpreting weighted premium principles. The method is based on modifying the underlying risk distribution in such a way that the risk-adjusted expected value (or premium) is greater than the expected value of some conveniently chosen function of claims, which defines the insurer’s perception of the risk. Under some assumptions on the function of claims, the method produces distortion premium principles. We provide several examples under different assumptions on the claim arrival process and different functions of claims, including record claims and kth record claims.
Point-process and other techniques are used to make a comprehensive investigation of the almost-sure behaviour of partial maxima (the rth largest among a sample of n i.i.d. random variables), partial record values and differences and quotients involving them. In particular, we obtain characterizations of such asymptotic properties as a.s. for some finite constant c, or a.s. for some constant c in [0,∞], which tell us, in various ways, how quickly the sequences increase. These characterizations take the form of integral conditions on the tail of F, which furthermore characterize such properties as stability and relative stability of the sequence of maxima. We also develop their relation to the large-sample behaviour of trimmed sums, and discuss some statistical applications.
In this paper various notions of positive and negative dependence for bivariate stochastic processes are introduced and their interrelationship is studied. Examples are given to illustrate these concepts.
Let {Xn, n ≧ 1} be i.i.d. and Yn = max {X1,…, Xn}. Xj is a record value of {Xn} if Yj > Yj–1 The record value times are Ln, n ≧ 1 and inter-record times are Δn, n ≧ 1. The known limiting behavior of {Ln} and {Δn} is close to that of a non-homogeneous Poisson process and an explanation of this is obtained by embedding {Yn} in a suitable extremal process which jumps according to a non-homogeneous Poisson process.
A correspondence between record values and independent increment point processes is established. The asymptotic behaviour of record value sequences is studied, and results on the asymptotic behaviour of record times (for continuous F) are obtained as special cases. The joint law of the kth record value and the kth record time is also derived.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.