Multiple trait selection indexes in pig breeding programmes should take into account the population structure and time delay between parent selection and expressions of traits in all production levels next to the trait impacts on economic efficiency of production systems. Gene flow procedures could be used for the correct evaluation of maternal and direct traits of pig breeds involved in breeding or crossbreeding systems. Therefore, the aim of this study was to expand a previously developed bioeconomic model and computer program to calculate the marginal economic values by including a gene flow procedure to calculate the economic weights for maternal and direct traits in pig breeds. The new program was then applied to the three-way crossbreeding system of the Czech National Programme for Pig Breeding. Using this program, the marginal economic values of traits for dam breeds Czech Large White in the dam position and Czech Landrace in the sire position, and for the sire breed Pietrain were weighted by the number of discounted gene expressions of selected parents of each breed summarised within all links of the crossbreeding system during the 8-year investment period. Economic weights calculated in this way were compared with the approximate economic weights calculated previously without a gene flow procedure. Taking into account the time delay between parent selection and trait expression (using discounting with half-year discount rates of 2% or 5%) and including more than one generation of parent progeny had little impact on the relative economic importance of maternal and direct traits of breeds involved in the evaluated three-way crossbreeding system. These results indicated that this gene-flow method could be foregone when estimating the relative economic weights of traits in pig crossbreeding systems applying artificial insemination at all production levels.