We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
We begin our study of geometric incidences by surveying the field and deriving a few first bounds. In this chapter we only discuss classical discrete geometry, from before the discovery of the new polynomial methods. This makes the current chapter rather different than the rest of the book (outrageously, it even includes some graph theory). We also learn basic tricks that are used throughout the book, such as double counting, applying the Cauchy–Schwarz inequality, and dyadic decomposition.
Topics that are discussed in this chapter: the Szemerédi–Trotter theorem, a proof of this theorem that relies on the crossing lemma, the unit distances problem, the distinct distances problem, a problem about unit area triangles, the sum-product problem, rich point, point-line duality.
In Chapter 7 we studied the ESGK framework. This was a reduction from the distinct distances problem to a problem about pairs of intersecting lines in R^3. In the current chapter we further reduce the problem to bounding the number of rich points of lines in R^3. We solve this incidence problem with a more involved variant of the constant-degree polynomial partitioning technique. This completes the proof of the Guth–Katz distinct distances theorem.
The original proof of Guth and Katz is quite involved. We study a simpler proof for a slightly weaker variant of the distinct distances theorem. This simpler proof was introduced by Guth and avoids the use of tools such as flat points and properties of ruled surfaces.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.