Three approaches to the analysis of main and interaction effect hypotheses in nonorthogonal designs were compared in a 2 × 2 design for data that was neither normal in form nor equal in variance. The approaches involved either least squares or robust estimators of central tendency and variability and/or a test statistic that either pools or does not pool sources of variance. Specifically, we compared the ANOVA F test which used trimmed means and Winsorized variances, the Welch-James test with the usual least squares estimators for central tendency and variability and the Welch-James test using trimmed means and Winsorized variances. As hypothesized, we found that the latter approach provided excellent Type I error control, whereas the former two did not.