This paper investigates the ordering properties of largest claim amounts in heterogeneous insurance portfolios in the sense of some transform orders, including the convex transform order and the star order. It is shown that the largest claim amount from a set of independent and heterogeneous exponential claims is more skewed than that from a set of independent and homogeneous exponential claims in the sense of the convex transform order. As a result, a lower bound for the coefficient of variation of the largest claim amount is established without any restrictions on the parameters of the distributions of claim severities. Furthermore, sufficient conditions are presented to compare the skewness of the largest claim amounts from two sets of independent multiple-outlier scaled claims according to the star order. Some comparison results are also developed for the multiple-outlier proportional hazard rates claims. Numerical examples are presented to illustrate these theoretical results.