We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Evidence suggests that cognitive subtypes exist in schizophrenia that may reflect different neurobiological trajectories. We aimed to identify whether IQ-derived cognitive subtypes are present in early-phase schizophrenia-spectrum disorder and examine their relationship with brain structure and markers of neuroinflammation.
Method
161 patients with recent-onset schizophrenia spectrum disorder (<5 years) were recruited. Estimated premorbid and current IQ were calculated using the Wechsler Test of Adult Reading and a 4-subtest WAIS-III. Cognitive subtypes were identified with k-means clustering. Freesurfer was used to analyse 3.0 T MRI. Blood samples were analysed for hs-CRP, IL-1RA, IL-6 and TNF-α.
Results
Three subtypes were identified indicating preserved (PIQ), deteriorated (DIQ) and compromised (CIQ) IQ. Absolute total brain volume was significantly smaller in CIQ compared to PIQ and DIQ, and intracranial volume was smaller in CIQ than PIQ (F(2, 124) = 6.407, p = 0.002) indicative of premorbid smaller brain size in the CIQ group. CIQ had higher levels of hs-CRP than PIQ (F(2, 131) = 5.01, p = 0.008). PIQ showed differentially impaired processing speed and verbal learning compared to IQ-matched healthy controls.
Conclusions
The findings add validity of a neurodevelopmental subtype of schizophrenia identified by comparing estimated premorbid and current IQ and characterised by smaller premorbid brain volume and higher measures of low-grade inflammation (CRP).
Schizophrenia (SZ), bipolar disorder (BD) and depression (D) run in families. This susceptibility is partly due to hundreds or thousands of common genetic variants, each conferring a fractional risk. The cumulative effects of the associated variants can be summarised as a polygenic risk score (PRS). Using data from the EUropean Network of national schizophrenia networks studying Gene-Environment Interactions (EU-GEI) first episode case–control study, we aimed to test whether PRSs for three major psychiatric disorders (SZ, BD, D) and for intelligent quotient (IQ) as a neurodevelopmental proxy, can discriminate affective psychosis (AP) from schizophrenia-spectrum disorder (SSD).
Methods
Participants (842 cases, 1284 controls) from 16 European EU-GEI sites were successfully genotyped following standard quality control procedures. The sample was stratified based on genomic ancestry and analyses were done only on the subsample representing the European population (573 cases, 1005 controls). Using PRS for SZ, BD, D, and IQ built from the latest available summary statistics, we performed simple or multinomial logistic regression models adjusted for 10 principal components for the different clinical comparisons.
Results
In case–control comparisons PRS-SZ, PRS-BD and PRS-D distributed differentially across psychotic subcategories. In case–case comparisons, both PRS-SZ [odds ratio (OR) = 0.7, 95% confidence interval (CI) 0.54–0.92] and PRS-D (OR = 1.31, 95% CI 1.06–1.61) differentiated AP from SSD; and within AP categories, only PRS-SZ differentiated BD from psychotic depression (OR = 2.14, 95% CI 1.23–3.74).
Conclusions
Combining PRS for severe psychiatric disorders in prediction models for psychosis phenotypes can increase discriminative ability and improve our understanding of these phenotypes. Our results point towards the potential usefulness of PRSs in specific populations such as high-risk or early psychosis phases.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.