We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Here, we focus on two factors that contribute to a paper’s fitness: novelty and publicity. By measuring the novelty of the ideas shared in a paper, we can explore the link between the originality of the research and its impact. Since new ideas are typically snythesized from existing knowledge, we can assess the novelty of an idea by looking at the number domains from which researchers sourced their ideas and how expected or unexpected the combination of domains are. Evidence shows that rare combinations in scientific publications or inventions are associated with high impact. Yet novel ideas are riskier than conventional ones, frequently resulting in failure. Research indicates that scientists tend to be biased against novelty, making unconventional work more difficult to get off the ground. In order to mitigate risk while maximizing novelty, scientists must balance novelty with conventionality. We then look at the role that publicity plays in amplifying a paper’s impact. We find that publicity, whether good or bad, always boosts a paper’s citation counts, indicating that, even in science, it’s better to receive negative attention than no attention at all.
This chapter explores the potential of implementation science to support the development of school psychology. Implementation science perspectives and evidence base provide essential information for effective school psychology service delivery. In Scotland in particular, systems and frameworks exist in school psychology that provide a substrate for the effective incorporation of evidence-based implementations. Over the last forty years, school psychology practitioners have anticipated much of the evidence now emerging from implementation science. They have highlighted contextual barriers to change experienced in schools but arguably have lacked sufficient scientific influence and the large-scale evidential basis required to create scientific impact. Diversity in origins and scope is clearly influential in the context of the development of the role of educational psychology day to day. For school psychology, the development of realist epistemology has proved central to understanding, defining, focusing and measuring the processes which govern change in real-world contexts.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.