We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
This Element addresses the viability of categoricity arguments in philosophy by focusing with some care on the specific conclusions that a sampling of prominent figures have attempted to draw – the same theorem might successfully support one such conclusion while failing to support another. It begins with Dedekind, Zermelo, and Kreisel, casting doubt on received readings of the latter two and highlighting the success of all three in achieving what are argued to be their actual goals. These earlier uses of categoricity arguments are then compared and contrasted with more recent work of Parsons and the co-authors Button and Walsh. Highlighting the roles of first- and second-order theorems, of external and internal theorems, the Element concludes that categoricity arguments have been more effective in historical cases that reflect philosophically on internal mathematical matters than in recent questions of pre-theoretic metaphysics.
Neo-Fregean logicists claim that Hume’s Principle (HP) may be taken as an implicit definition of cardinal number, true simply by fiat. A long-standing problem for neo-Fregean logicism is that HP is not deductively conservative over pure axiomatic second-order logic. This seems to preclude HP from being true by fiat. In this paper, we study Richard Kimberly Heck’s Two-Sorted Frege Arithmetic (2FA), a variation on HP which has been thought to be deductively conservative over second-order logic. We show that it isn’t. In fact, 2FA is not conservative over n-th order logic, for all $n \geq 2$. It follows that in the usual one-sorted setting, HP is not deductively Field-conservative over second- or higher-order logic.
The injective version of Cantor’s theorem appears in full second-order logic as the inconsistency of the abstraction principle, Frege’s Basic Law V (BLV), an inconsistency easily shown using Russell’s paradox. This incompatibility is akin to others—most notably that of a (Dedekind) infinite universe with the Nuisance Principle (NP) discussed by neo-Fregean philosophers of mathematics. This paper uses the Burali–Forti paradox to demonstrate this incompatibility, and another closely related, without appeal to principles related to the axiom of choice—a result hitherto unestablished. It discusses both the general interest of this result, its interest to neo-Fregean philosophy of mathematics, and the potential significance of the Burali–Fortian method of proof.
Zermelo’s Theorem that the axiom of choice is equivalent to the principle that every set can be well-ordered goes through in third-order logic, but in second-order logic we run into expressivity issues. In this note, we show that in a natural extension of second-order logic weaker than third-order logic, choice still implies the well-ordering principle. Moreover, this extended second-order logic with choice is conservative over ordinary second-order logic with the well-ordering principle. We also discuss a variant choice principle, due to Hilbert and Ackermann, which neither implies nor is implied by the well-ordering principle.
We show that if $(M,{ \in _1},{ \in _2})$ satisfies the first-order Zermelo–Fraenkel axioms of set theory when the membership relation is ${ \in _1}$ and also when the membership relation is ${ \in _2}$, and in both cases the formulas are allowed to contain both ${ \in _1}$ and ${ \in _2}$, then $\left( {M, \in _1 } \right) \cong \left( {M, \in _2 } \right)$, and the isomorphism is definable in $(M,{ \in _1},{ \in _2})$. This extends Zermelo’s 1930 theorem in [6].
First-order formalisations are often preferred to propositional ones because they are thought to underwrite the validity of more arguments. We compare and contrast the ability of some well-known logics—these two in particular—to formally capture valid and invalid arguments. We show that there is a precise and important sense in which first-order logic does not improve on propositional logic in this respect. We also prove some generalisations and related results of philosophical interest. The rest of the article investigates the results’ philosophical significance. A first moral is that the correct way to state the oft-cited superiority of first-order logic vis-à-vis propositional logic is more nuanced than often thought. The second moral concerns semantic theory; the third logic’s use as a tool for discovery. A fourth and final moral is that second-order logic’s transcendence of first-order logic is greater than first-order logic’s transcendence of propositional logic.
The isomorphism invariance criterion of logical nature has much to commend it. It can be philosophically motivated by the thought that logic is distinctively general or topic neutral. It is capable of precise set-theoretic formulation. And it delivers an extension of ‘logical constant’ which respects the intuitively clear cases. Despite its attractions, the criterion has recently come under attack. Critics such as Feferman, MacFarlane and Bonnay argue that the criterion overgenerates by incorrectly judging mathematical notions as logical. We consider five possible precisifications of the overgeneration argument and find them all unconvincing.
I show that any sentence of nth-order (pure or applied) arithmetic can be expressed with no loss of compositionality as a second-order sentence containing no arithmetical vocabulary, and use this result to prove a completeness theorem for applied arithmetic. More specifically. I set forth an enriched second-order language L. a sentence of L (which is true on the intended interpretation of L), and a compositionally recursive transformation Tr defined on formulas of L, and show that they have the following two properties: (a) in a universe with at least ℶn−2 objects, any formula of nth-order (pure or applied) arithmetic can be expressed as a formula of L, and (b) for any sentence of is a second-order sentence containing no arithmetical vocabulary, and
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.