The recent numerical simulations of Tittemore and Wisdom (1988,1989,1990) and Dermott et al. (1988), Malhotra and Dermott (1990) concerning the tidal evolution through resonances of some pairs of Uranian satellites have revealed interesting dynamical phenomena related to the interactions between close-by resonances. These interactions produce chaotic layers and strong secondary resonances. The slow evolution of the satellite orbits in this dynamical lanscape is responsible for temporary capture into resonance, enhancement of eccentricity or inclination and subsequent escape from resonance. The present contribution aims at developing analytical tools for predicting the location and size of chaotic layers and secondary resonances. The problem of the 1:3 inclination resonance between Miranda and Umbriel is analysed.