We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
There is an association between the development of cleavage domes, a texture reflecting the displacement of insoluble matrix grains by porphyroblasts growing under a bulk hydrostatic stress, and textural sector-zoning. This has been found in garnet, staurolite, chiastolite, pyrite and possibly emerald porphyroblasts. Sector-zoned porphyroblasts form by lineage growth normal to the crystal faces. This causes several distinctive textures (type 1 inclusions and type 2 intergrowths, inclusion bands, growth prongs), all of which are directly or indirectly related to displacement growth. Graphite or other carbonaceous material is ubiquitous in samples showing textural sector-zoning.
Monazite-(Ce) from a dolomite carbonatite at Kangankunde, Malawi, is sector-zoned with variation in La2O3 of up to 6.0 wt.% and in Nd2O3 of up to 3.9 wt.% between sectors. Single crystal X-ray diffraction, backscattered electron imaging and microprobe analysis have been used to establish the relationship between the morphology and sector chemistry of this low-Th monazite, (Ce,La,Nd)PO4. Uptake of La by {011} sector surfaces is enhanced relative to that of and {100} sectors; Ce shows no partitioning differences; and uptake of Nd is more easily facilitated on and {100} surfaces relative to {011}. There appears to be a distinct relationship between the size of the REE ion and the probability of uptake via the different growth surfaces. Interpretation of this uptake behaviour, based on theories involving ‘protosites’, involves an investigation of the possible kink site geometries at edge-steps during growth. Part-formed kink sites with small entrance sizes are calculated to occur with higher frequency on relative to {011}, and this correlates with an increase in the smaller-sized REE (Nd) uptake by growth surfaces. The overall morphology and sector growth is suggested to be a function of uptake chemistry.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.