In temperate plant communities, seed size is often inversely related to seed longevity at the species level. We tested if the inverse relationship between seed size and seed longevity holds among individuals within populations of Ambrosia trifida L. (Asteraceae), a summer annual agricultural weed in the eastern United States Corn Belt that typically emerges in two successive flushes: one before 1 May and one after 1 May. The effects of maternal phenotype on seed morphology, seed weight, late emergence (emergence after 1 May) and seed-bank persistence were determined in two 1-year experiments. All seeds were collected from individuals at weekly intervals for 3 weeks. Sixty seeds per collection were used in the analysis. Despite fluctuating environmental conditions during seed development, seed weight within maternal families remained constant for different maturation times. Differences among families constituted 69% of total variation in seed weight, whereas differences within maternal families composed 31% of the variation in seed weight. Percentage late emergence and percentage seed-bank persistence varied among maternal families. In four maternal families, either 0% or 100% of seedlings emerged after 1 May, but a majority of other maternal families produced seedlings both before and after 1 May. Seed-bank persistence rates ranged from 1 to 51% among maternal families. Percentage late emergence and percentage seed-bank persistence were inversely related to maternal-family mean seed weight in 2006, but not in 2005. These results suggest that the inverse relationship between seed size and seed longevity occurs among individuals of a population, but is affected by the environment.