We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Adiabatic self-heating tests were carried out on five New Zealand coal samples ranging in rank from lignite to high-volatile bituminous. Kinetic parameters of oxidation were obtained from the self-heating curves assuming Arrhenius behaviour. The activation energy E (kJ mol–1) and the pre-exponential factor A (s–1) were determined in the temperature range of 70–140°C. The activation energy exhibited a definite rank relationship with a minimum E of 55 kJ mol–1 occurring at a Suggate rank of ∼6.2 corresponding to subbituminous C. Either side of this rank there was a noticeable increase in the activation energy indicating lower reactivity of the coal. A similar rank trend was also observed in the R70 self-heating rate index values that were taken from the initial portion of the self-heating curve from 40 to 70°C. From these results it is clear that the adiabatic method is capable of providing reliable kinetic parameters of coal oxidation.
La fatigue à grand nombre de cycles (HCF) prend une place majeure dans le dimensionnementdes pièces de l’industrie automobile. Beaucoup de ces pièces sont obtenues à partir detôles en acier par emboutissage. Lors de cette opération de mise en forme, l’acier estdéformé plastiquement dans différentes directions. Une prévision fiable de durée de vie deces pièces requière alors de connaître les propriétés en fatigue du matériau pré-déformé.De nos jours, l’évolution des propriétés en fatigue est souvent négligée, dueprincipalement au temps prohibitif qui doit être alloué à des essais de fatigue classique.Pour réduire le temps de caractérisation, les essais d’auto-échauffement sont utilisés.Cette approche permet de déterminer l’influence d’une pré-déformation plastique homogènesur les propriétés en fatigue des aciers, via un modèle probabiliste à deux échelles. Lebut de ce papier est de proposer une approche expérimentale originale pour identifierl’influence d’une pré-déformation plastique sur une large gamme de pré-déformation grâce àune seule et unique éprouvette. Le cas particulier d’une éprouvette avec un gradientconstant de pré-déformation est présenté. L’utilisation de la corrélation d’images permetde valider la répartition du champ de pré-déformation plastique. Une mesure par camérainfrarouge lors de l’essai d’auto-échauffement couplée à la résolution de l’équation de lachaleur 1D permet d’identifier l’influence d’une pré-déformation plastique sur lespropriétés en fatigue de l’acier dual phase considéré.
In the framework of the Top Amplifier Research Groups in a European Team (TARGET) project, we developed a new electrical method for the temperature measurement of HEMTs and performed several unique studies on the self-heating effects in AlGaN/GaN HEMTs. This method, in combination with transient interferometric mapping (TIM), provides a fundamental understanding of the heat propagation in a transient state of HEMTs. The AlGaN/GaN/Si HEMT thermal resistance was determined to be ~70 K/W after 400 ns from the start of a pulse, and the heating time constant was ~200 ns. Our experimental methods were further applied on multifinger high-power AlGaN/GaN/sapphire HEMTs. The TIM method indicates that the airbridge structure serves as a cooler, removing approximately 10% of the heat energy. In the next study we used TIM and the micro-Raman technique to quantify thermal boundary resistance (TBR) between different wafer materials and GaN epi-structure. We found TBR to be ~7 × 10−8 m2K/W for GaN/Si and ~1.2 × 10−7 m2K/W for GaN/SiC interfaces. The role of TBR at the GaN/sapphire interface was found to be less important.
We have calculated the thermal boundary resistance at the GaN/SiC, GaN/sapphire and GaN/AlN interfaces in the diffuse mismatch approximation. The obtained values were then used to examine the effect of the thermal boundary resistance on heat diffusion in AlGaN/GaN heterostructure field-effect transistors. The results show that the thermal boundary resistance at the device layer interfaces can strongly influence the temperature rise in the device channel.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.