This paper studies the attainable set at time T>0 for the control system $$\dot y(t)=f(y(t),u(t))\,\qquad u(t)\in U$$ showing that, under suitable assumptions on f, such a set satisfies a uniform interior sphere condition. The interior sphere property is then applied to recover a semiconcavity result for the valuefunction of time optimal control problems with a general target, and todeduce C1,1-regularity for boundaries of attainable sets.