We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
The chapter reviews long wavelength mid-infrared quantum cascade lasers (QCLs) emitting between 15 and 28 μm. Historically, 15 μm was a border wavelength above which the QCL performances dramatically degraded, which was partly due to an increase in optical losses in the devices with approaching the Reststrahlen band. This intrinsic limitation caused by multi-phonon absorption sets forbidden or favorable spectral areas depending on the employed materials. The chapter considers specific properties of long wavelength mid-infrared QCLs based on different materials, as well as more general issues related to the QCL design in this long-wavelength frontier of the mid-infrared. The discussed results are presented in the chronological order for each QCL material system, which allows the reader to follow the advances in the field.
Semiconductor lasers: rate equations and threshold conditions for laser action. Confinement factor. Temperature dependence of the threshold current: characteristic temperature. Output power: external quantum efficiency and slope efficiency. Quantum well lasers. General structures of semiconductor lasers. Spectral and spatial characteristics of diode laser emission.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.