We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
We study Hamilton-Jacobi equations related to the boundary (or internal) control of semilinear parabolic equations, including the case of a control acting in a nonlinear boundary condition, or the case of a nonlinearity of Burgers' type in 2D. To deal with a control acting in a boundary condition a fractional power $(-A)^\beta$ – where (A,D(A)) is an unbounded operator in a Hilbert space X – is contained in the Hamiltonian functional appearing in the Hamilton-Jacobi equation. This situation has already been studied in the literature. But, due to the nonlinear term in the state equation, the same fractional power $(-A)^\beta$ appears in another nonlinear term whose behavior is different from the one of the Hamiltonian functional. We also consider cost functionals which are not bounded in bounded subsets in X, but only in bounded subsets in a space $Y\hookrightarrow X$. To treat these new difficulties, we show that the value function of control problems we consider is equal in bounded sets in Y to the unique viscosity solution of some Hamilton-Jacobi-Bellman equation. We look for viscosity solutions in classes of functions which are Hölder continuous with respect to the time variable.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.