The seriation of proximity matrices is an important problem in combinatorial data analysis and can be conducted using a variety of objective criteria. Some of the most popular criteria for evaluating an ordering of objects are based on (anti-) Robinson forms, which reflect the pattern of elements within each row and/or column of the reordered matrix when moving away from the main diagonal. This paper presents a branch-and-bound algorithm that can be used to seriate a symmetric dissimilarity matrix by identifying a reordering of rows and columns of the matrix optimizing an anti-Robinson criterion. Computational results are provided for several proximity matrices from the literature using four different anti-Robinson criteria. The results suggest that with respect to computational efficiency, the branch-and-bound algorithm is generally competitive with dynamic programming. Further, because it requires much less storage than dynamic programming, the branch-and-bound algorithm can provide guaranteed optimal solutions for matrices that are too large for dynamic programming implementations.