This paper displays model structures for the category of pro-objects in simplicial presheaves on an arbitrary small Grothendieck site. The first of these is an analogue of the Edwards-Hastings model structure for pro-simplicial sets, in which the cofibrations are monomorphisms and the weak equivalences are specified by comparisons of function complexes. Other model structures are built from the Edwards-Hastings structure by using Bousfield-Friedlander localization techniques. There is, in particular, an n-type structure for pro-simplicial presheaves, and also a model structure in which the map from a pro-object to its Postnikov tower is formally inverted.