Calculation of loss scenarios is a fundamental requirement of simulation-based capital models and these are commonly approximated. Within a life insurance setting, a loss scenario may involve an asset-liability optimization. When cashflows and asset values are dependent on only a small number of risk factor components, low-dimensional approximations may be used as inputs into the optimization and resulting in loss approximation. By considering these loss approximations as perturbations of linear optimization problems, approximation errors in loss scenarios can be bounded to first order and attributed to specific proxies. This attribution creates a mechanism for approximation improvements and for the eventual elimination of approximation errors in capital estimates through targeted exact computation. The results are demonstrated through a stylized worked example and corresponding numerical study. Advances in error analysis of proxy models enhance confidence in capital estimates. Beyond error analysis, the presented methods can be applied to general sensitivity analysis and the calculation of risk.