We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Let
$q\ge2$
be an integer,
$\{X_n\}_{n\geq 1}$
a stochastic process with state space
$\{0,\ldots,q-1\}$
, and F the cumulative distribution function (CDF) of
$\sum_{n=1}^\infty X_n q^{-n}$
. We show that stationarity of
$\{X_n\}_{n\geq 1}$
is equivalent to a functional equation obeyed by F, and use this to characterize the characteristic function of X and the structure of F in terms of its Lebesgue decomposition. More precisely, while the absolutely continuous component of F can only be the uniform distribution on the unit interval, its discrete component can only be a countable convex combination of certain explicitly computable CDFs for probability distributions with finite support. We also show that
$\mathrm{d} F$
is a Rajchman measure if and only if F is the uniform CDF on [0, 1].
The boundary element method for the eddy current problem (BEM-ECP) was proposed in a number of papers and is applicable to important tasks such as the problem of inductive heating and transmission of electromagnetic energy. BEM-ECP requires the construction of a system of linear algebraic equations in which the matrix is inherently dense and is constructed out of element matrices. For the process of the element matrix computation, two cases are normally considered: far-field interaction and near-field interaction, because the construction of element matrices requires integration of a singular function. In this article, we suggest a transform that allows computing the matrix components of the near-singular interaction part while implementing only the single and double layer potentials. The previously suggested modified double layer potential (MDLP) can be integrated by means of this transform, which simplifies the program implementation of BEM-ECP significantly. Solving model problems, we analyse the drawbacks of the previously suggested approach. This analysis includes the proof of the MDLP singularity that makes the integration of this potential a rather difficult task without the help of our transform. The previously suggested approach does not work well with surfaces that are not smooth. Our approach does consider such cases, which is its main advantage. We demonstrate this on the model problems with known analytical solutions.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.