Psychological tests often involve item clusters that are designed to solicit responses to behavioral stimuli. The dependency between individual responses within clusters beyond that which can be explained by the underlying trait sometimes reveals structures that are of substantive interest. The paper describes two general classes of models for this type of locally dependent responses. Specifically, the models include a generalized log-linear representation and a hybrid parameterization model for polytomous data. A compact matrix notation designed to succinctly represent the system of complex multivariate polytomous responses is presented. The matrix representation creates the necessary formulation for the locally dependent kernel for polytomous item responses. Using polytomous data from an inventory of hostility, we provide illustrations as to how the locally dependent models can be used in psychological measurement.