We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
This article aims to analyze the relationship between user characteristics on social networks and influenza.
Methods:
Three specific research questions are investigated: (1) we classify Weibo updates to recognize influenza-related information based on machine learning algorithms and propose a quantitative model for influenza susceptibility in social networks; (2) we adopt in-degree indicator from complex networks theory as social media status to verify its coefficient correlation with influenza susceptibility; (3) we also apply the LDA topic model to explore users’ physical condition from Weibo to further calculate its coefficient correlation with influenza susceptibility. From the perspective of social networking status, we analyze and extract influenza-related information from social media, with many advantages including efficiency, low cost, and real time.
Results:
We find a moderate negative correlation between the susceptibility of users to influenza and social network status, while there is a significant positive correlation between physical condition and susceptibility to influenza.
Conclusions:
Our findings reveal the laws behind the phenomenon of online disease transmission, and providing important evidence for analyzing, predicting, and preventing disease transmission. Also, this study provides theoretical and methodological underpinnings for further exploration and measurement of more factors associated with infection control and public health from social networks.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.