We show that closed $\mathbb{S}\text{ol}^{3}\times \mathbb{E}^{1}$-manifolds are Seifert fibred, with general fibre the torus, and base one of the flat 2-orbifolds $T,Kb,\mathbb{A},\mathbb{M}b,S(2,2,2,2),P(2,2)$ or $\mathbb{D}(2,2)$, and outline how such manifolds may be classified.