Pseudo cross-variograms appear naturally in the context of multivariate Brown–Resnick processes, and are a useful tool for analysis and prediction of multivariate random fields. We give a necessary and sufficient criterion for a matrix-valued function to be a pseudo cross-variogram, and further provide a Schoenberg-type result connecting pseudo cross-variograms and multivariate correlation functions. By means of these characterizations, we provide extensions of the popular univariate space–time covariance model of Gneiting to the multivariate case.