Recently, we analysed spontaneous symmetry breaking (SSB) of solitons in linearly coupled dual-core waveguides with fractional diffraction and cubic nonlinearity. In a practical context, the system can serve as a model for optical waveguides with the fractional diffraction or Bose–Einstein condensate of particles with Lévy index $\alpha <2$. In an earlier study, the SSB in the fractional coupler was identified as the bifurcation of subcritical type, becoming extremely subcritical in the limit of $\alpha \rightarrow 1$. There, the moving solitons and collisions between them at low speeds were also explored. In the present paper, we present new numerical results for fast solitons demonstrating restoration of symmetry in post-collision dynamics.